

Reference Architecture

Monitoring and Logging for
Docker Enterprise Edition

Version 1.1
March 2017

Table of contents

1 Introduction
1.1 Monitoring and Logging Designed for Docker
1.1 Sematext Docker Agent

2 What you will Learn
3 Understand Key Docker Metrics

3.1 Operating System Metrics for each Node
3.1.1 Host CPU
3.1.2 Host Memory
3.1.3 Host Disk Space

3.2 Total Number of Running Containers
3.3 Container Metrics

3.3.1 Container CPU - Throttled CPU Time
3.3.2 Container Memory - Fail Counters
3.3.3 Container Memory Usage
3.3.4 Container Swap
3.3.5 Container Disk I/O
3.3.6 Container Network Metrics

4 Assumptions
5 Requirements
6 Prerequisites
7 Monitoring & Logging Deployment

7.1 Docker Remote API Integration Options
7.2 Summary

8 Solution Deployment
8.1 Connect Docker-Compose to Docker UCP Cluster
8.2 Configure Sematext Docker Agent for Docker UCP

8.2.1 Create SPM and Logsene Apps
8.2.2 Deploy the Agent to all Docker UCP Nodes
8.2.3 Voila! Your Docker Monitoring & Logging Works
8.2.4 Connect Metrics and Logs for Faster Troubleshooting

9 Configuring Sematext Docker Agent
9.1 Connection to SPM and Logsene

9.1.1 SPM and Logsene in the Cloud (SaaS)
9.1.2 SPM and Logsene On Premises

9.2 Log Handling Options
9.2.1 Blacklisting and Whitelisting Logs
9.2.2 Automatic Parser for Container Logs
9.2.3 Log Routing with Docker Labels
9.2.4 Masking Sensitive Data in Logs
9.2.5 Automatic Geo-IP Enrichment for Container Logs
9.2.6 Post-processing Parsed Logs with JavaScript Functions

10 Summary
11 References
Appendix A - Sematext Docker Agent Configuration Options

1 Introduction

Docker Enterprise Edition (Docker EE) simplifies container orchestration and
increases the flexibility and scalability of application deployments. However, the
high level of automation create new challenges for monitoring and log
management. Why? Because each container typically runs a single process, has its
own environment, utilizes virtual networks, or has various methods of managing
storage. Traditional monitoring solutions take metrics from each server and
applications they run. These servers and applications running on them are typically
very static, with very long uptimes. Docker deployments are different: a set of
containers may run many applications, all sharing the resources of one or more
underlying hosts. It’s not uncommon for Docker servers to run many short-term
containers for batch jobs, while a set of permanent services runs in parallel.
Traditional monitoring tools not used to such dynamic environments are not suited
for such deployments. On the other hand, some modern monitoring solutions were
built with such dynamic systems in mind and even have out of the box reporting for
Docker monitoring. Moreover, container resource sharing calls for stricter
enforcement of resource usage limits, an additional issue you must watch carefully.
To make appropriate adjustments for resource quotas you need good visibility into
any limits containers have reached or errors they have caused. We recommend
using alerts according to defined limits; this way you can adjust limits or resource
usage even before errors start happening.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 1

https://sematext.com/docker

1.1 Monitoring and Logging Designed for Docker

Docker UCP includes only real-time monitoring of the cluster state, real-time
metrics and logs for each container. Operating larger infrastructures requires a
longer retention time for logs and metrics and the capability to correlate metrics,
logs and events on several levels (cluster, nodes, applications and containers). A
comprehensive monitoring and logging solution ought to provide the following
operational insights:

- Auditing of Docker events. Tracking of all Docker events provides a clear
view of containers life cycle. For example, by collecting events you gain
insight into what happens with your containers during (re)deployments or the
re-scheduling of containers to different nodes. Some containers might be
configured for automatic restarts and the events could indicate whether
container processes crash frequently. In case of out-of-memory events, it
might be wise to modify the memory limits or check with developers why this
event happened. Docker Events also carry information critical for the security
of applications, such as:

- Version changes of application images
- Application shutdowns
- Changes of storage volumes or network settings
- Deletion of storage volumes, which might cause data loss

- Resource usage for capacity planning and tuning. ​The resource

management with Docker is one of the main advantages of running
multi-tenant workflows on shared resources. To do so, definitions for
resource limits like CPU, IO and Memory are required. Many organisations
face the challenge that they don’t know the exact requirements of their
Dockerized applications, typically because they might have been deployed in
other ways in the past. At this point monitoring the resources required by
containers helps one determine the right limits, as well as observe whether
the assumed limits are truly appropriate.

- Detailed metrics for cluster nodes and containers. Having detailed

metrics helps optimize application resource usage. Detailed metrics are the
basis for defining application-specific alert criteria for any critical resources
applications depend on. Metrics are aggregated for all hosts, images and
containers and are filterable by hosts, images, and containers. This lets you
drill down from a cluster view down to a single container while
troubleshooting or simply trying to understand operations details. Long
retention times for metrics make it possible to compare resources before and

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 2

https://sematext.com/docker

after different deployments and releases or troubleshoot problems that
appear only when a service has been running over several days or weeks!

- Centralized log management with full-text search, filtering, and

analytics across all containers. Logs should be collected, parsed and
shipped to an indexing engine. The integrated charting functions in Logsene
and integrations for Kibana and Grafana make it easy to analyze logs
collected in Docker EE.

- Anomaly detection and alerts for all logs and metrics. Anomaly

detection can help reduce the noise and alert fatigue often caused by classic
threshold-based alerts. Even log-alerting is possible with Logsene e.g. to
detect anomalies in the log frequency of a specific query. For example, a
search for “error” in the system might normally return a dozen non-critical
errors, which could be ignored. An increase of error logs indicates that
something might be going wrong. Another type of alerts is the Heartbeat
alert for all cluster nodes. Disk space alerts are very useful for Docker
nodes, because Docker images might consume a lot of disk space. Docker EE
runs some cleanup agents to remove unused containers and images;
nevertheless the default disk-space alert created by SPM provides an early
warning before the capacity limit is reached.

- Long retention time for logs, metrics and events. Comparing metrics

and logs during deployments or watching the performance under different
workloads requires one to store logs and metrics for a reasonable time. We
have seen cases where memory leaks started to get serious after a few
weeks of stable operations, although initially they were not detected. In such
cases all context information like logs, events and metrics could be very
valuable in identifying the root cause of such problems.

1.1 Sematext Docker Agent
The Docker Datacenter architecture is open for extensions, such as Monitoring and
Logging. This document explains how Docker Datacenter can be extended with
Sematext SPM ​for ​Docker Performance Monitoring [1] and ​Logsene [2] for Log
Management. More specifically, we will use the open-source ​Sematext Docker
Agent to get all data from hosts and containers to have the complete Docker
monitoring and logging solution.

Sematext Docker Agent is a modern, Docker-aware metrics, events, and log
collection agent. It runs as a tiny container on every Docker host collecting logs,
metrics and events for all cluster hosts and all containers from the Docker Remote
API. It auto-discovers all containers including the containers for Docker UCP

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 3

https://sematext.com/spm/
https://sematext.com/docker
https://sematext.com/spm/integrations/docker-monitoring/
https://github.com/sematext/sematext-agent-docker
https://github.com/sematext/sematext-agent-docker
https://sematext.com/logsene/

services. Sematext Docker Agent streams metrics, events, and logs via TLS
(HTTPS) to SPM and Logsene. After the deployment of the agent all logs and
metrics are immediately available in SPM and Logsene.

2 What you will Learn

In this reference architecture document, you will find out about all key Docker
metrics to watch. Following that, you will learn how to set up monitoring and
logging for a Docker UCP cluster. Specifically, this document shows how to use
Sematext Docker Agent to collect metrics, events and logs for all nodes and
containers.

3 Understand Key Docker Metrics

3.1 Operating System Metrics for each Node

3.1.1 Host CPU
Understanding the CPU utilization of hosts and containers helps one optimize the
resource usage of Docker UCP nodes. The container CPU usage can be throttled in
order to avoid a single busy container slowing down other containers by taking
away all available CPU resources. Throttling the CPU time is a good way to ensure
a minimum of processing power for essential services - it’s like the good old nice
levels in Unix/Linux.

When the resource usage is optimized, a high CPU utilization might actually be
expected and even desired, and alerts might make sense only for when CPU
utilisation drops (service outages) or increases for a longer period over some max
limit (e.g. 85%).

3.1.2 Host Memory
The total memory used in each Docker UCP node is important to know for the
current operations and for capacity planning. Dynamic cluster managers like Docker
Swarm use the total memory available on the node and the requested memory for
containers to decide on which host a new container should ideally be launched.
Deployments might fail if a cluster manager is unable to find a host with sufficient
resources for the container. That’s why it is important to know the host memory
usage and the memory limits of containers. Adjusting the capacity of new cluster
nodes according to the footprint of Docker applications could help optimize the
resource usage.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 4

https://sematext.com/docker

3.1.3 Host Disk Space
Docker images and containers consume additional disk space. For example, an
application image might include a Linux operating system and might have a size of
150-700 MB depending on the size of the base image and installed tools in the
container. Persistent Docker volumes consume disk space on the host as well. In
our experience watching the disk space and using cleanup tools is essential for
continuous operations of Docker hosts.

Disk Space used on two nodes

Because disk space is very critical it makes sense to define alerts for disk space
utilization to serve as early warnings and provide enough time to clean up disks or
add additional volumes. For example, SPM automatically sets alert rules for disk
space usage for you, so you don’t have to remember to do it.
A good practice is to run tasks to clean up the disk by removing unused containers
and images frequently.

3.2 Total Number of Running Containers
The current and historical number of containers is an interesting metric for many
reasons. For example, it is very handy during deployments and updates to check
that everything is running like before.
When Docker UCP automatically schedules containers to run on different hosts
using different scheduling policies, the number of containers running on each host
can help one verify the activated scheduling policies. A stacked bar chart displaying
the number of containers on each host and the total number of containers provides
a quick visualization of how the cluster manager distributed the containers across
the available hosts.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 5

https://sematext.com/docker

Container counts per Docker host over time

This metric can have different “patterns” depending on the use case. For example,
batch jobs running in containers vs. long running services commonly result in
different container count patterns. A batch job typically starts a container on
demand, or starts it periodically, and the container with that job terminates after a
relatively short time. In such a scenario one might see a big variation in the
number of containers running resulting in a “spiky” container count metric. On the
other hand, long running services such as web servers or databases typically run
until they get re-deployed during software updates. Although scaling mechanisms
might increase or decrease the number of containers depending on load, traffic, and
other factors, the container count metric will typically be relatively steady because
in such cases containers are often added and removed more gradually. Because of
that, there is no general pattern we could use for a default Docker alert rule on the
number of running containers.
Nevertheless, alerts based on anomaly detection, which detect sudden changes in
the number of the containers in total (or for specific hosts) in a short time window,
can be very handy for most of the use cases. The simple threshold-based alerts
make sense only when the maximum or minimum number of running containers is
known, and in dynamic environments that scale up and down based on external
factors, this is often not the case.

3.3 Container Metrics
Container metrics are basically the same metrics available for every Linux process,
but include limits set via cgroups by Docker, such as limits for CPU or memory
usage. Please note that sophisticated monitoring solutions like SPM for Docker are
able to aggregate Container Metrics on different levels like Docker Hosts/Cluster
Nodes, Image Name or ID and Container Name or ID. Having the ability to do that
makes it easy to track resources usage by hosts, application types (image names)

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 6

https://sematext.com/docker
https://sematext.com/spm/integrations/docker-monitoring/

or specific containers. In the following examples we might use aggregations on
various levels.

3.3.1 Container CPU - Throttled CPU Time
One of the most basic bits of information is information about how much CPU is
being consumed by all containers, images, or by specific containers. A great
advantage of using Docker is the capability to limit CPU utilisation by containers. Of
course, you can’t tune and optimize something if you don’t measure it, so
monitoring such limits is the prerequisite. Observing the total time that a
container’s CPU usage was throttled provides the information one needs to adjust
the setting for ​CPU shares in Docker​. Please note that CPU time is throttled only
when the host CPU usage is maxed out. As long as the host has spare CPU cycles
available for Docker it will not throttle containers’ CPU usage. Therefore, the
throttled CPU is typically zero and a spike of this metric is a typically a good
indication of one or more containers needing more CPU power than the host can
provide.

Container CPU usage and throttled CPU time

The following screenshot shows containers with 5% CPU quota using the command ​docker

run --cpu-quota=5000 nginx​, we see clearly how the throttled CPU grows until it reaches
around 5%, enforced by the Docker engine.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 7

https://docs.docker.com/engine/reference/run/#cpu-share-constraint
https://docs.docker.com/engine/reference/run/#cpu-share-constraint
https://sematext.com/docker

Container CPU usage and throttled CPU time with CPU quota of 5%

3.3.2 Container Memory - Fail Counters
It is a good practice to set memory limits for containers. Doing that helps avoid a
memory-hungry container taking all available memory and starving all other
containers on the same server. Runtime constraints on resources can be defined in
the Docker run command​. For example, “-m 300M” sets the memory limit for the
container to 300 MB. Docker exposes a metric called container memory fail
counters. This counter is increased each time memory allocation fails -- that is,
each time the pre-set memory limit is hit. Thus, spikes in this metric indicate one
or more containers needing more memory than was allocated. If the process in the
container terminates because of this error, we might also see out of memory events
from Docker.
A spike in memory fail counters is a critical event and putting alerts on the memory
fail counter is very helpful to detect wrong settings for the memory limits or to
discover containers that try to consume more memory than expected.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 8

https://sematext.com/docker
https://docs.docker.com/engine/reference/run/

Container Memory, Memory Fail counters and Swap activity

3.3.3 Container Memory Usage
Different applications have different memory footprints. Knowing the memory
footprint of the application containers is important for having a stable environment.
Container memory limits ensure that applications perform well, without using too
much memory, which could affect other containers on the same host. The best
practice is to tune memory setting in a few iterations:

1. Monitor memory usage of the application container
2. Set memory limits according to the observations
3. Continue monitoring of memory, memory fail counters, and Out-Of-Memory

events. If OOM events happen, the container memory limits may need to be
increased, or debugging is required to find the reason for the high memory
consumptions.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 9

https://sematext.com/docker

Container memory usage

3.3.4 Container Swap
Like the memory of any other process, a container’s memory could be swapped to
disk. For applications like Elasticsearch or Solr one often finds instructions to
deactivate swap on the Linux host - but if you run such applications on Docker it
might be sufficient just to set “--memory-swap=-1” in the Docker run command!

Container swap, memory pages, and swap rate

3.3.5 Container Disk I/O
In Docker multiple applications use the same resources concurrently. Thus,
watching the disk I/O helps one define limits for specific applications and give
higher throughput to critical applications like data stores or web servers, while
throttling disk I/O for batch operations. For example, the command ​docker run -it

--device-write-bps /dev/sda:1mb mybatchjob would limit the container disk writes
to a maximum of 1 MB/s.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 10

https://sematext.com/docker

Container I/O throughput

3.3.6 Container Network Metrics
Networking for containers can be very challenging. By default all containers share
a network, or containers might be linked together to share a separated network on
the same host. However, when it comes to networking between containers running
on different hosts an overlay network is required, or containers could share the host
network. Having many options for network configurations means there are many
possible causes of network errors.

Moreover, not only errors or dropped packets are important to watch out for.
Today, most of the applications are deeply dependent on network communication.
Throughput of virtual networks could be a bottleneck especially for containers like
load balancers. In addition, the network traffic might be a good indicator how much
applications are used by clients and sometimes you might see high spikes, which
could indicate denial of service attacks, load tests, or a failure in client apps. So
watch the network traffic - it is a useful metric in many cases.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 11

https://sematext.com/docker

Network traffic and transmission rates

4 Assumptions
This reference architecture assumes the reader already has a working
understanding of Docker EE, in particular the following components: Docker
Universal Control Plane, Swarm, and Compose. If you are not familiar with them,
please refer to the following resources to gain the basic understanding:

● Docker Universal Control Plane at ​docs.docker.com/ucp
● Docker Swarm at ​docs.docker.com/swarm
● Docker Compose at ​docs.docker.com/compose
● Docker Daemon is configured for UNIX domain sockets e.g.

 “docker daemon -H ​unix:​///var/run/docker.sock”

5 Requirements
There are software version requirements for this reference architecture. Other
variations have not been tested or validated. For more details on software
compatibility and interoperability please go to ​Compatibility Matrix page​.

● Docker UCP v2.x
● Docker Engine 1.12
● Free account for Sematext SaaS or On Premises SPM/Logsene installation

(email ​sales@sematext.com or call +1 (347) 480 1610 for a free
SPM/Logsene evaluation)

6 Prerequisites
For this reference architecture, you will need the following environment set up.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 12

https://docs.docker.com/swarm/
https://apps.sematext.com/users-web/register.do
https://sematext.com/docker
https://success.docker.com/Get_Help/Compatibility_Matrix_and_Maintenance_Lifecycle
https://docs.docker.com/ucp/overview/
http://docs.docker.com/compose
mailto:sales@sematext.com

● Installed Docker UCP; see ​installation requirements​.
● Unrestricted or proxy network connection between the Docker UCP nodes and

SPM On Premises server or Sematext SaaS servers:
spm-receiver.sematext.com:443, logsene-receiver.sematext.com:443

● Network reachability to the UCP controller nodes on TCP port 80/443.
● Docker and Docker Compose client

○ installation instructions: ​https://docs.docker.com/compose/install/
○ Linux or Mac OS X terminal with bash and docker client.

7 Monitoring & Logging Deployment
Sematext Docker Agent runs as a tiny Docker container on each Docker node.
From there it calls Docker API to get logs, metrics, and events for all containers
running on the same node, as well as the node itself. It then streams those data to
Sematext SPM and Logsene over an encrypted connection.

7.1 Docker Remote API Integration Options

There are several options to connect Sematext Docker Agent to the Docker Remote
API, depending on the configuration of the Docker daemon:

● Connect to Docker host via UNIX domain socket
● Connect to Docker host via TLS socket

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 13

https://docs.docker.com/ucp/installation/plan-production-install/
https://docs.docker.com/compose/install/
https://sematext.com/docker

● Connect to Docker host via TCP socket
● Connect to the Docker UCP Remote API endpoint (proxy to Docker Swarm)

via TLS

Sematext Docker Agent supports all of these methods, please refer to ​Appendix A -
Configuration options for Sematext Docker Agent​. For TLS connections, the agent
requires access to the TLS certificates (e.g. mounted to a volume). The UNIX socket
connection requires access permission to Docker’s UNIX socket.

Keeping in mind that Docker UCP cluster looks like a single Docker host from the
Docker Remote API point of view, it should be very easy to monitor Docker UCP /
Swarm with existing Docker monitoring tools! Connecting a monitoring agent to
the Swarm Master API endpoint is one potential option. The Sematext Docker
Agent would collect all container metrics, events and all logs from the Swarm
Master. The following considerations lead to the requirement to have the monitoring
and logging agent running on each Docker UCP node:

● If a single monitoring agent were to connect only to the master node, it
would miss host metrics for all other nodes because the Docker API doesn’t
provide any host metrics. We could also not see how much memory, disk
space, or CPU the Docker UCP / Swarm node itself consumes. Solution:
deploy the monitoring agents to each node for collecting the host metrics
locally.

● In a larger cluster with a high volume of logs, events and metrics to collect, a
single monitoring agent connected to the master node would need to handle
all operational data of the cluster. This would work for a small cluster but
such an architecture would obviously be destined for failure on larger
clusters. It’s much better to have an agent running on each node and spread
the monitoring and logging work over all nodes. Another positive side-effect
of this is that there is no need to change the deployment strategy later, when
the cluster scales out.

● If the monitoring agent were to lose the connection to the master node, the
monitoring of all containers would fail. To avoid a single point of failure it
makes sense to monitor each node individually.

7.2 Summary

Monitoring and logging agent should run on every node for the following reasons:

● Collection of performance metrics on each Docker UCP node provides
complete information about the node and the containers running on each
node

● Load sharing of monitoring and logging workloads

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 14

https://sematext.com/docker

● No single point of failure
● The connection from the agent to the Docker Remote API should be

established to the local Docker daemon via UNIX socket and not to the
Docker UCP endpoint with TLS

Target setup

To deploy Sematext Docker Agent to all Docker UCP nodes we will use
docker-compose scale command, connected to the Docker API endpoint for the
Docker UCP cluster. See chapter 8 for details.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 15

https://sematext.com/docker

8 Solution Deployment

The deployment of Sematext Docker Agent requires three steps:

1 Connect docker-compose
client to Docker UCP

Download client bundle from Docker UCP
user profile. Set the environment for the
docker CLI with the certificates and
scripts included in the client bundle.

2 Create SPM and Logsene
tokens for Sematext Docker
Agent

1. Obtain SPM and Logsene App

Tokens from Sematext
2. Set container constraints with a

negative affinity to the container
name to ensure that Sematext
Docker Agent runs only once on
each node

3 Deploy Sematext Docker
Agent

Deploy the monitoring agent to all cluster
nodes as global service

As soon the agent is deployed it ships metrics, events and logs collected via the
local Docker Remote API endpoint (e.g. /var/run/docker.sock) to the configured
backend. In this example we don’t configure specific SPM and Logsene servers, and
rely on the default values for SaaS.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 16

https://sematext.com/docker

8.1 Connect Docker-Compose to Docker UCP Cluster

After installing UCP, you can run the docker command against UCP cluster nodes.
Since all traffic between users and UCP nodes is secure and authenticated, when
using the Docker CLI client, you’ll need to provide client certificates.
Download the bundle that contains the client certificates for a user from the UCP
web app:

1. If you haven’t already done so, log into UCP
2. Navigate to your profile
3. As an example, if you’re logged in as the Admin user, on the right-hand

menu, navigate to Admin > Profile
4. Click the Create Client Bundle button
5. The browser downloads the ucp-bundle-admin.zip file
6. Copy the client bundle in your working directory and extract the files

$ cp ~/Downloads/ucp-bundle-admin.zip .

$ unzip ucp-bundle-admin.zip

7. Run the included shell script to set the environment variables to access UCP
with docker CLI client

 ​ ​$ source env.sh

8. Check the settings by running “docker info” to see if docker CLI is connected
to UCP
$ docker info

8.2 Configure Sematext Docker Agent for Docker UCP

Sematext Docker Agent is configured via environment variables. ​Appendix A lists all
configuration options (e.g. filter for specific images and containers), but we’ll keep
it simple here.

8.2.1 Create SPM and Logsene Apps
1. Sign up for free at ​apps.sematext.com​, if you haven’t done that already
2. Create an SPM App of type “Docker” to obtain the SPM App Token. SPM App

will hold your Docker UCP performance metrics.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 17

https://apps.sematext.com/users-web/register.do
https://sematext.com/docker
https://apps.sematext.com/spm-reports/registerApplication.do

3. Create a Logsene App to obtain the Logsene Token. Logsene App will hold
your Docker UCP logs.

8.2.2 Deploy the Agent to all Docker UCP Nodes

To deploy Sematext Docker Agent to all nodes, we have to run a global Swarm
service, including the Logsene and SPM application tokens, and access to the local
docker socket on each node:

docker service create --mode global --name sematext-agent-docker \

--mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \

-e SPM_TOKEN="​REPLACE THIS WITH YOUR SPM TOKEN​" \
-e LOGSENE_TOKEN="​REPLACE THIS WITH YOUR LOGSENE TOKEN​" \
sematext/sematext-agent-docker

If you have to use a proxy add ​-e HTTPS_PROXY=​https://your-proxy-server:port​ ​to
the service command above.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 18

https://sematext.com/docker
https://apps.sematext.com/logsene-reports/registerApplication.do

The command outputs the Docker Swarm service ID, which could be used with the
docker service command. If you check the status of the service with ​docker service

ps SERVICE_ID you’ll see sematext-docker-agent getting scheduled for deployment on
each node shortly after running the above command.

Note: The global services ensures that Sematext Docker Agents gets deployed to
each node and every new node added to Docker UCP.

Sematext Docker Agent running on all Docker UCP nodes

8.2.3 Voila! Your Docker Monitoring & Logging Works
After about a minute you should see the performance metrics of all Docker UCP
nodes and deployed containers in your SPM Apps...

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 19

https://sematext.com/docker

Key Docker metrics in SPM

The Server view should show all Docker UCP nodes:

Docker UCP nodes

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 20

https://sematext.com/docker

...and you will see all your Docker logs in Logsene.
This screenshot shows parsed web server logs tagged with Docker compose
metadata, such as compose project, server, container number:

Logsene native UI shows automatically parsed log structure

Logsene integrated Kibana dashboards to slice and dice Docker log data

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 21

https://sematext.com/docker

8.2.4 Connect Metrics and Logs for Faster Troubleshooting
For faster troubleshooting you can connect apps (SPM app with SPM app, Logsene
with Logsene, or SPM with Logsene). Connecting apps lets you more easily
correlate metrics and logs and thus more quickly find the root cause of performance
and other issues.

1. Open “Logs” section in SPM, click to the link icon in the top right corner and
choose your Logsene Application.

2. Press the connect button to save the setting

Once SPM app with your Docker metrics and events and your Logsene app with
your Docker logs are connected, you can see all these data in a single pane of
glass:

Docker performance metrics and logs in a single pane of glass

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 22

https://sematext.com/docker

9 Configuring Sematext Docker Agent

9.1 Connection to SPM and Logsene
SPM and Logsene are available in the Cloud (SaaS) or On Premises. Depending on
this setup Sematext Docker Agent needs to be configured to ship data to the
appropriate SPM and Logsene data receiver endpoints.

9.1.1 SPM and Logsene in the Cloud (SaaS)
The default configuration of Sematext Docker Agent is to connect via TLS (HTTPS)
to the SaaS provided by Sematext using the following API endpoints:

● SPM Receiver for metrics collection: ​https://spm-receiver.sematext.com:443
● Event Receiver for (Docker) events:

https://event-receiver.sematext.com:443
● Logsene Receiver for logs: ​https://logsene-receiver.sematext.com:443

If you are using SPM or Logsene SaaS there is no configuration required to use the
above default settings.

To reach the above mentioned Receiver services through firewalls, it is possible to
configure proxy server settings as URL using the environment variable ​HTTPS_PROXY.

9.1.2 SPM and Logsene On Premises
If SPM and Logsene (not just the agents, but the whole SPM and Logsene solution)
are deployed in the local network the servers will have local IP addresses or DNS
names. Sematext Docker Agent lets you change the Receiver addresses for SPM
and Logsene using environment variables:

● SPM_RECEIVER_URL​ - URL to your SPM Receiver
● EVENTS_RECEIVER_URL​ - URL to your Events Receiver
● LOGSENE_RECEIVER_URL​ - URL to your Logsene Receiver

Detailed installation instructions are included in the SPM and Logsene On Premises
package - email ​sales@sematext.com or call +1 (347) 480 1610 for a free
evaluation copy.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 23

https://event-receiver.sematext.com/
https://spm-receiver.sematext.com/
mailto:sales@sematext.com
https://logsene-receiver.sematext.com/
https://sematext.com/docker

9.2 Log Handling Options

9.2.1 Blacklisting and Whitelisting Logs
Not all logs might be of interest, so sooner or later you will have the need to
blacklist some log types. This is one of the reasons why Sematext Docker Agent
automatically adds the following tags to all logs:

● Container ID
● Container Name
● Image Name
● Docker Compose Project Name
● Docker Compose Service Name
● Docker Compose Container Number

Using this “log metadata” you can whitelist or blacklist log outputs by image or
container names. The relevant environment variables are:

● MATCH_BY_NAME — a regular expression to whitelist container names
● MATCH_BY_IMAGE — a regular expression to whitelist image names
● SKIP_BY_NAME — a regular expression to blacklist container names
● SKIP_BY_IMAGE — a regular expression to blacklist image names

9.2.2 Automatic Parser for Container Logs

In Docker logs are console output streams from containers. They might be a mix of
plain text messages from start scripts and structured logs from applications. The
problem is obvious – you can’t just take a stream of log events all mixed up and
treat them like a blob. You need to be able to tell which log event belongs to what
container, what app, parse it correctly in order to structure it so you can later
derive more insight and operational intelligence from logs, etc.

Sematext Docker Agent analyzes the event format, parses out data, and turns logs
into structured JSON. This is important, because the value of logs increases when
you structure them — you can then slice and dice them and gain a lot more insight
about how your containers, servers, and applications operate.

Traditionally it was necessary to use log shippers like Logstash, Fluentd or rsyslog
to parse log messages. The problem is that such setups are typically deployed in a
very static fashion and configured for each input source. That does not work well in
the hyper-dynamic world of containers! We have seen people struggling with the
syslog drivers, parsers configurations, log routing, and more! With its integrated
automatic format detection Sematext Docker Agent eliminates this struggle — and
the waste of resources — both computing and human time that goes into dealing

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 24

https://sematext.com/docker

with such things! This integration has a low footprint, doesn’t need retransmissions
of logs to external services, and it detects log types for the most popular
applications and generic JSON and line-oriented log formats out of the box!

Example: Apache Access Log fields generated by Sematext Docker Agent

For example, Sematext Docker Agent can parse logs from official images like:
● Nginx, Apache, Redis, MongoDB, MySQL
● Elasticsearch, Solr, Kafka, Zookeeper
● Hadoop, HBase, Cassandra
● Any JSON output with special support for Logstash or Bunyan format
● Plain text messages with or without timestamps in various formats
● Various Linux and Mac OSX system logs

In addition, you can define your own patterns for any log format you need to be
able to parse and structure. There are three options to pass individual ​log parser
patterns​ [3]:

● Configuration file in a mounted volume:
-v PATH_TO_YOUR_FILE:/etc/logagent/patterns.yml

● Content of the configuration file in an environment variable
-e LOGAGENT_PATTERNS=”$(cat patterns.yml)”

● Download pattern definitions via HTTP
-e PATTERNS_URL=​http://yourserver/patterns.yml

The file format for the patterns.yml file is based on​ ​JS-YAML​, in short:
 ​-​ indicates an array element
 ​!js/regexp​ - indicates a JavaScript regular expression
 ​!!js/function >​ - indicates a JavaScript function

The file has the following properties:

● patterns​: list of patterns, each pattern starts with "-"
● match​: group of patterns for a specific log source (image / container)
● regex​: JS regular expression
● fields​: field list of extracted match groups from the regex
● type​: type used in Logsene (Elasticsearch Mapping)

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 25

https://nodeca.github.io/js-yaml/
https://sematext.github.io/logagent-js/parser/
https://sematext.com/docker
http://yourserver/patterns.yml
https://sematext.github.io/logagent-js/parser/
https://nodeca.github.io/js-yaml/

● dateFormat​: format of the special fields 'ts', if the date format matches, a
new field @timestamp is generated

● transform​: JS function to manipulate the result of regex and date parsing

The following example shows pattern definitions for web server logs, which is one of
the patterns available by default:

Example from ​https://sematext.github.io/logagent-js/parser/

This example shows a few very interesting features:

- Masking sensitive data ​with “​autohash​” property, listing fields to be
replaced with a hash code. See ​section 9.2.4​.

- Automatic Geo-IP lookups including automatic updates for Maxmind
Geo-IP lite database. See ​section 9.2.5​.

- Post-processing of parsed logs ​with JavaScript functions. See ​section
9.2.6​.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 26

https://sematext.com/docker
https://sematext.github.io/logagent-js/parser/

The component for detecting and parsing log messages — ​logagent-js — is open
source and contributions for even more log formats are welcome.

9.2.3 Log Routing with Docker Labels
Storing all logs in a single searchable index represented by a Logsene App Token
might be very convenient for quick troubleshooting. However, there are common
scenarios when you would want to have different logs indexed in separate Logsene
Apps, such as:

● Limit access to different logs to different teams or team members. In
Logsene the access permissions can be granted on a per Logsene App basis.
This means you can have very fine control over who has the rights to see
which logs.

● Analytics for logs. All data used for structured analytics like web server
logs, sensor data or KPI’s are much easier to process when stored in their
own Logsene Apps without the “noise” from other applications with different
log structures. For example, you probably wouldn’t want to mix logs from
your custom app running in a container with Nginx and MySQL logs, so you
might create separate Logsene Apps for each of them.

Sematext Docker Agent can route logs from different containers to specific Logsene
Apps. It builds the log routing table by reading the Logsene App Token from
containers’ Docker Labels. This approach is much more dynamic than maintaining a
large configuration file that maps container IDs to Logsene App Tokens.

Example:
To route logs from Nginx to a dedicated Logsene App and attach a Docker Label to
the Nginx containers:

docker run --label LOGSENE_TOKEN=YOUR-LOGSENE-TOKEN-HERE nginx

Sematext Docker Agent will recognize the Label during the auto-discovery of any
new containers and will use the corresponding Logsene App Token to ship logs to
that Logsene App. The end result is that all logs from all containers labeled “nginx”
will get aggregated in the same Logsene App.

9.2.4 Masking Sensitive Data in Logs
Logs can contain sensitive data — credit card numbers, social security numbers,
birthdays, and so on. Sematext Docker Agent lets you mask such sensitive data
before shipping it, thus hiding it from overly curious 3rd parties (network proxies,
storage providers, etc.).

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 27

https://sematext.com/docker
https://github.com/sematext/logagent-js

Replacing content with hash codes has the advantage that the content is not
“readable” for 3rd parties, but knowing the original value lets you calculate the
hash code for later search. This makes it possible to search for logs with a specific
hashed field content.
Consider a scenario with a client phone number that was stored as SHA hash code
in a masked field in Logsene. During an investigation of a problem related to that
phone number you would be able to calculate the SHA hash code of the client
phone number and then search for that hash code in your logs in Logsene to find all
related logs — ​without exposing the actual phone number to 3rd parties (including
Sematext)​.

To use this, in the custom pattern definition list all log fields that need to be
masked. The Sematext Docker agent will then automatically mask all such fields.
For example, we could use this settings in patterns.yml:
Sensitive data can be replaced with a hashcode.

It applies to fields matching the field names by a regular expression

autohash​: ​!!js/regexp​ /user|password|email|credit_card_number|payment_info/i

set the option to include original log to ‘false’

when autohash is used.

The original log line might include sensitive data!

originalLine​: false

9.2.5 Automatic Geo-IP Enrichment for Container Logs

Getting logs from Docker Containers collected, shipped and parsed out of the box is

already a big time saver, but some application logs need additional enrichment with

information from other data sources. A common use case is to enrich web server

logs (or really any logs with IP addresses) with geographical information derived

from those IP addresses.

Sematext Docker Agent supports Geo-IP enrichment, simply activated by the the

environment variable ​GEOIP_ENABLED=true​.
It uses Maxmind Geo-IP lite database, which is updated automatically in the

running container! There is no need to stop the container, mount new volumes with

the Geo-IP database, etc.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 28

https://sematext.com/docker

Visualization of Geo-IP data in Logsene / Kibana

9.2.6 Post-processing Parsed Logs with JavaScript Functions

Log data can be complex! Simple extraction of text might not be sufficient for
advanced analytics — you might need to perform simple calculations based on
extracted fields. Or, in another case, you like to transform the most relevant part of
a large log entry into a human readable message. Sematext Docker Agent lets you
apply post-processing to the output of the log parser to further restructure logs
before they are shipped and indexed.

In custom pattern definitions (​patterns.yml for the logagent-js parser), post
processing hooks can be defined in JavaScript (Node.js runtime). Each pattern
definition has an optional “transform” property for such JavaScript functions. In the
following example we simply overwrite the “message field” in a web server log with
the HTTP method and the path to generate a short but readable content in the
“message” field:

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 29

https://sematext.com/docker

Example from ​https://sematext.github.io/logagent-js/parser/

If you want to apply a function to all logs, and not just to specific patterns,
Sematext Docker Agent supports this as well. To do that use the JavaScript function
called “​globalTransform​” with two parameters: the name of the log source
(image_name/container_name/id) and the parsed object to be modified.

The “​globalTransform​” function is a top level property in the ​patterns.yml ​file and
not bound to any specific subsection for patterns.

10 Summary
In this Reference Architecture, we set up monitoring and log collection for a Docker
EE cluster, which you can use with Docker Datacenter deployment of any size. We
learned about Docker Key Metrics and how to interpret them in various scenarios.
Sematext Docker Agent was deployed via Docker UCP Remote API endpoint and
configured via docker-compose to collect metrics, logs, and events locally on each
node. In addition, we described several useful configuration options for log
processing to improve log analytics for better operational insights.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 30

https://sematext.github.io/logagent-js/parser/
https://sematext.com/docker

11 References

[1] SPM Performance Monitoring - ​http://sematext.com/spm

[2] Logsene - ​http://sematext.com/logsene

[3] Logagent-js - ​https://sematext.github.io/logagent-js

[4] Sematext Docker Agent -
https://github.com/sematext/sematext-agent-docker

[5] Sematext Group, Inc.
540 President St. 3rd Floor
Brooklyn, NY 11215
USA
E-Mail: ​sales@sematext.com
Phone: +1 (347) 480 1610

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 31

https://sematext.com/docker
http://sematext.com/spm
http://sematext.com/logsene
https://sematext.github.io/logagent-js
https://github.com/sematext/sematext-agent-docker
mailto:sales@sematext.com

Appendix A - Sematext Docker Agent Configuration
Options

Parameter / Environment

variable
Description

Required Parameters

SPM_TOKEN SPM Application Token, enables metric and
event collection

LOGSENE_TOKEN Logsene Application Token enables logging to
Logsene, see logging specific parameters for
filter options and Log Routing section to route
logs from different containers to separate
Logsene applications

-v
/var/run/docker.sock:/var/run/d
ocker.sock

Path to the docker socket (optional, if dockerd
provides TCP on 2375, see also
DOCKER_PORT and DOCKER_HOST
parameter)

TCP and TLS connection
If the UNIX socket is not available Sematext Agent assumes the Container
Gateway Address (autodetect) and port 2375 as default (no TLS) - this needs no
configuration. If Docker Daemon TCP settings are different you have to configure
the TCP settings. The TCP settings can be modified with the following parameters.
Please note the following parameters are compatible with the variables set in the
“docker-machine env” command.

DOCKER_HOST e.g. tcp://ip-reachable-from-container:2375/ -
default value 'unix:///var/run/docker.sock'.
When the UNIX socket is not available the
agent tries to connect to tcp://gateway:2375.
In case a TCP socket is used there is no need
to mount the Docker UNIX socket as volume

DOCKER_PORT Sematext Docker Agent will use its gateway
address (autodetect) with the given
DOCKER_PORT

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 32

https://sematext.com/docker

DOCKER_TLS_VERIFY 0 or 1

DOCKER_CERT_PATH Path to your certificate files. Mount the path to
the certificates with
-v $DOCKER_CERT_PATH:$DOCKER_CERT_PATH

Optional Parameters

--privileged The parameter might be helpful when
Sematext Agent cannot start because of
limited permission to connect and write to the
Docker socket /var/run/docker.sock. The
privileged mode is a potential security risk, so
we recommend to enable the appropriate
security. Please read about Docker security:
https://docs.docker.com/engine/security/secu
rity/

HOSTNAME_LOOKUP_URL On Amazon ECS, a​ ​metadata query​ must be
used to get the instance hostname (e.g.
"169.254.169.254/latest/meta-data/local-host
name")

HTTPS_PROXY URL for a proxy server (behind firewalls)

LOGSENE_RECEIVER_URL URL for bulk inserts into Logsene. Required for
Logsene On Premises only.

SPM_RECEIVER_URL URL for bulk inserts into SPM. Required for
SPM On Premises only.

EVENTS_RECEIVER_URL URL for SPM events receiver. Required for SPM
On Premises only.

Docker Logs Parameters

Whitelist containers

MATCH_BY_NAME Regular expression to white list container
names

MATCH_BY_IMAGE Regular expression to white list image names

Blacklist containers

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 33

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://sematext.com/docker
https://docs.docker.com/engine/security/security/

SKIP_BY_NAME Regular expression to black list container
names

SKIP_BY_IMAGE Regular expression to black list image names
for logging

-v
/yourpatterns/patterns.yml:/etc/l
ogagent/patterns.yml

Pass custom patterns.yml for log parsing, see
logagent-js

-v /tmp:/logsene-log-buffer Directory to store logs, in case of a network or
service outage. Docker Agent deletes these
files after a successful transmission.

GEOIP_ENABLED true​ enables Geo-IP lookups in the log parser;
default value: ​false

MAXMIND_DB_DIR Directory for the Geo-IP lite database, must
end with /. Storing the DB in a volume could
save downloads for updates after restarts.
Using /tmp/ (ramdisk) could speed up Geo-IP
lookups (consumes add. ~30 MB main
memory).

For the most up to date list of Sematext Docker Agent options see
https://github.com/sematext/sematext-agent-docker​.

Sematext Group Inc. For the latest version see ​https://sematext.com/docker​ Page 34

https://github.com/sematext/logagent-js
https://github.com/sematext/logagent-js
https://github.com/sematext/sematext-agent-docker
https://sematext.com/docker

Sematext Group Inc.
sematext.com

sematext.com/blog
twitter.com/sematext

+1-347-480-1610

540 President Street, 3rd Floor
Brooklyn, NY 11215 USA

Single Pane of Glass for Monitoring, Logging & Analytics
Search and Big Data Consulting
Production Support and Training for Solr and Elasticsearch

https://twitter.com/sematext
https://sematext.com/blog/
https://sematext.com/contact/
https://sematext.com/

